Skip to content

ModelCubComputer Vision, Simplified

Train and deploy CV models locally. Version datasets like code. Zero cloud costs.

ModelCub

The Workflow

bash
pip install modelcub
modelcub init my-project
modelcub dataset add --path ./data --name v1
modelcub dataset fix v1 --auto
modelcub train --dataset v1 --auto

Why ModelCub?

Stop wasting time on dataset debugging. Automatically detect and fix corrupt images, invalid labels, duplicates, and format issues.

Stop paying Roboflow $8k/month. Run everything locally with zero cloud costs.

Stop losing track of datasets. Version control with git-like semantics. Visual diffs show exactly what changed.

Python SDK

python
from modelcub import Project, Dataset, Model

# Initialize
project = Project.init("my-project")
dataset = project.import_dataset("./data", name="v1")

# Fix issues
dataset.fix(auto=True)

# Train
model = Model("yolov11n", task="detect")
run = project.train(model=model, dataset=dataset, auto=True)

# Results
print(f"mAP50: {run.evaluate().map50:.3f}")

Comparison

ModelCubRoboflowUltralytics
CostFree$8k+/moFree
Runs Locally
Auto-Fix
Version ControlLimited
Visual Diff

Use Cases

  • Medical Imaging: HIPAA-compliant, on-premise training
  • Startups: Save $96k/year in cloud costs
  • Research: Reproducible experiments with versioned datasets
  • Privacy-Sensitive: Air-gapped environments supported

Get Started

bash
pip install modelcub

Read the Installation Guide or check out the Quick Start.


MIT License • GitHubDocumentation

Released under the MIT License.